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Abstract—Micro-chaos is the phenomenon when the sampling,
the delay and the round-off lead to small amplitude chaotic
oscillations in a digitally controlled system. It has been proved
mathematically during the last few years in a couple of simple
cases that the evolving vibrations are indeed chaotic. In this
study, we partially generalize these results to the case when
an originally unstable state of a system is stabilized by digital
feedback control. It is pointed out that this type of systems are
sensitive to initial conditions and there exists a finite attracting
domain in their phase-space. We also show that the oscillations,
related to micro-chaos may have a considerable influence on the
accuracy and settling time of the control system. The application
of numerical techniques is unavoidable in the case of chaotic
systems. Several possibilities are highlighted in the paper for the
numerical determination of important characteristics of micro-
chaotic oscillations.

I. INTRODUCTION

The chaotic vibrations that are originated from the digital
implementation of control are known for more than 20 years
[1], [2], [3], and [4]. The consideration of the effects of
sampling and processing delay is a routine procedure among
control engineers [5], but the round-off in the analogue-
digital converters is usually neglected. However, round-off
frequently leads to deterministic – but small scale – chaotic
behaviour which is often considered simply as stochastic noise
in the practice. We think that certain properties of the control
system could be improved by the proper modelling of the
aforementioned deterministic effects.

Since the amplitude of chaotic vibrations, induced by the
digital effects, is very small, this type of chaos is referred
to as micro-chaos [3]. The chaotic nature of the oscillations
was rigorously proved in Devaney’s sense [7] in three simple
cases: differential control without delay [3], differential control
with delay [4], and PD control without delay [6]. According
to Devaney’s def nition of chaos, there must exist an attractor
within which the solutions depend sensitively on initial con-
ditions. Moreover, the map that governs the solutions must be
topologically transitive and the periodic points must be dense
in the attractor.

While the proof of the sensitive dependence on initial
conditions and the existence of an attractor is quite simple in
the considered cases, the proof of the fulf llment of the third
and fourth conditions of chaos – topological transitivity and
dense periodic points – is usually rather diff cult. Since the
algorithms of the three aforementioned proofs are different,
their generalization is not straightforward. In practice, the
fulf llment of the f rst two conditions already indicates the
chaotic nature of the considered system. This is why systems

with a positive Lyapunov exponent are usually considered
chaotic.

The problems related to digital control gained attention
in the f elds of mathematics, control theory, and even neu-
robiology (see e.g. [8], [9], and [10], [11] and [12]). The
communication among the scientists from these diverse f elds
is often diff cult due to the different formulation of similar
problems. Our earlier papers about digital control focused only
on mechanical models. In the present study, we generalize our
results. The equations describing the effects of sampling and
delayed feedback will be presented in Section 2, to introduce
the notations used in the paper. While the publications in this
f eld typically consider only small, toy-models, it is possibile
to formulate the so-called micro-chaos map for full feedback
systems of any size. This procedure will be shown in Section 3.
In Section 4, the possibilities for the characterization of micro-
chaotic oscillations are highlighted, via an example. The results
are summarized in Section 5.

II. STATE-SPACE MODEL OF FULL-STATE
FEEDBACK WITH PROCESSING DELAY

We consider systems that can be described in the contin-
uous case (if there are no digital effects) by f rst order linear
differential equations, i.e.,

ẋ = Ãx+ B̃u, (1)

where x ∈ Rn denotes the state vector and Ã ∈ Rn×n and
B̃ ∈ Rn×1 are the coeff cient matrices. u ∈ R denotes the
control signal that is a linear function of the state vector

u(t) = K0x(t). (2)

In case of digital systems, the state of the system is known
only at the sampling instants. It is typical in such cases that so-
called zero-order-hold control is applied, i.e., the control signal
is kept constant between the successive sampling instants. If
some time is necessary for the calculation of the control signal,
it will be the function of the previously sampled state (or states)
of the system. We restrict ourselves to the cases when the delay
is either zero or is an integer multiple of the sampling time.
Thus, the control signal in the delayed case can be written as

ui = K1xi−1 + . . .+Kpxi−p (3)

between the ith and i+1st sampling instants. Here Ki ∈ R1×n

are the matrices of feedback gains.
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A. The effect of sampling – without delay

If there is no processing delay, the discretized form of the
governing equations can be given as

xi+1 = Axi +Bui

ui = K0xi

}

⇒ xi+1 = (A+BK0)xi ≡ S1xi.

(4)
where the coeff cient matrices of the discrete system can be
calculated as A = exp(Ãτ) and B =

∫ τ

0 exp(Ãz)dz B̃, A ∈
Rn×n and B ∈ Rn×1,

If the x = 0 state of the system is unstable without control,
at least one of the eigenvalues of matrix A must be outside the
unit circle on the complex plane. However, all the eigenvalues
of matrix S1 must be inside the unit circle for the stabilization
of the x = 0 state.

B. The effect of sampling – with processing delay

If the control signal ui depends on p pieces of the delayed
values of the state, we arrive at

xi+1 = Axi +Bui, (5)
ui+1 = K1xi +K2xi−1 + . . .+Kpxi−p+1.

By complementing the state vector xi by the control signal ui,
a new state vector can be def ned yi = [ui xi . . . xi−p+1]

T

and the discrete map can be given in the form yi+1 = S2yi:








ui+1

xi+1

...
xi−p+2









=







0 K1 . . . Kp

B A 0 0
0 I1 0 0
0 0 I2 0















ui

xi

...
xi−p+1









(6)

The sizes of the unit matrices are I1 ∈ Rn×n and I2 ∈
Rn(p−1)×n(p−1). If p = 1, these unit matrices do not show up
in the hypermatrix. If p = 0, there is no delay, thus, Equation
(4) gives the correct form of the map, instead of (6).

Thus, if there is no round-off, the general form of the map
is

yi+1 = Syi, (7)

both with and without delay. yi ≡ xi ∈ Rn and S ≡ S1,
as def ned by (4) if there is no delay, while yi ∈ Rpn+1 and
S ≡ S2, according to (6) in case of delay. We consider cases
when the desired state of the continuous system is unstable
without control, but stabilized by the control. Thus, all the
eigenvalues of the corresponding matrix S must be less than
one in modulus.

III. POSSIBLE TYPES OF ROUND-OFF

There are basically two analogue-digital transformations
during the operation of a control system: on the one hand, the
input state is measured and the measured values are quantized.
On the other hand, the calculated control signal – the output –
can assume also only a f nite number of values. In the present
section, these effects will be modelled. Note that we focus on
the control system instead of the system that is controlled. This
is why the state is referred to as input and the control signal
is the output.

A. Round-off at the output – without delay

If there is no delay, no round-off at the input, but the
calculated control signal ui is sent out with resolution rO,
the following map describes the evolution of the state instead
of Equation (4):

xi+1 = Axi +BrO Int

(

ui

rO

)

, (8)

ui = K0xi.

The function Int:R → Z calculates the integer part of the
output, rounding towards zero. If the elements of the state
vector xi are small (e.g., ui/rO = K0xi/rO is less than one),
the difference between the calculated and the rounded values
of the output is rather large. Thus, the behaviour of the system
is determined by the matrix A, the system is locally unstable.

On the other hand, if the system’s state is far from the
origin, the effect of round-off is negligible. The large-scale
behaviour of the system is well described if map (8) is
rewritten as

xi+1 = (A+BK0)xi −BrO fi, (9)

where fi ∈ R denotes the neglected fractional part of the
output, i.e., fi ∈ (−1, 1), ∀i. This fractional part does not
inf uence considerably the behaviour of the system if the output
value is large. Thus, the system is globally stable, since the
matrix S ≡ S1 = A+BK0 governs its large-scale behaviour.

B. Round-off at the output – with delay

If the delayed values of the state are used for the determi-
nation of the output, the map (corresponding to (6)) assumes
the form









ui+1

xi+1

...
xi−p+2









=







0 0 . . . 0
B A 0 0
0 I1 0 0
0 0 I2 0















ui

xi

...
xi−p+1









(10)

+









rOInt
(

∑p

j=1 Kjxi−j+1/rO

)

0
0
0









≡ Uyi + bi,

where U is the coeff cient matrix of the uncontrolled system,
with at least one eigenvalue outside the unit circle, according to
our assumption. The alternative form of this map emphasizes
the large-scale behaviour of the system:









ui+1

xi+1

...
xi−(p−1)









=







0 K0 . . . Kp

B A 0 0
0 I1 0 0
0 0 I2 0















ui

xi

...
xi−p









−







rOfi
0
0
0






≡ Syi − sOfi. (11)

Vectors bi and ci ≡ sOfi contain the integer and fractional
parts of the output signals, respectively. These vectors vary
irregularly during the evolution of the system, leading to
chaotic behaviour.
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C. Round-off at the input

If the measured inputs are quantized instead of the output,
the maps corresponding to (8), (10) and (11) can be formulated
as follows: if there is no delay,

xi+1 = Axi +BK rIInt
(

r−1
I xi

)

, and (12)
xi+1 = (A+BK)xi −BKrIFi, (13)

where the diagonal matrix

rI = diag[rI1 rI2 . . . rIn] (14)

contains the values of the resolution for the n state variables.
The function Int:Rn → Zn calculates the integer part of its
operand. The neglected fractional parts of the state vectors are
collected to vector Fi

In case of delay, the coeff cient matrices are the same as
in Eqs. (10) and (11), and the shift vectors can be given as

bi =







∑p

j=1 KjrIInt
(

r−1
I xi−j+1

)

0
0
0






, (15)

si =







∑p

j=1 (KjrIFi−j+1)
0
0
0






=







∑p

j=1 (Kj) rIF̃i

0
0
0






.

Note that the fractional part vectors Fi−j+1, j = 1 . . . p –
each having elements between -1 and 1 – can be exchanged
here by a single vector F̃i if the corresponding elements of
vectors Kj have the same sign. Othervise, the absolute values
of the elements must be considered.

Thus, we found that independently on the type of round-
off, the discrete map describing the evolution of the system
can be given as yi+1 = Uyi + bi or yi+1 = Syi − ci. We
will refer to these maps as micro-chaos maps.

IV. CHARACTERIZATION OF MICRO-CHAOS

Several quantities were introduced in the theory of dynam-
ical systems for the characterization of chaotic behaviour. In
the present section, we calculate some of these quantities in
the case of a realistic example, using algorithms that best suit
to the considered problem. Our main goal is to f nd those
properties of micro-chaos that may inf uence the macro-scale
behaviour of the controlled system.

A. Size of the attracting domain

1) Existence of an attracting domain:From the practical
point of view, the most important characteristics of micro-
chaotic behaviour are the expected amplitude of the oscillations
and the maximal distance of the attractor from the desired state.
These two distances are approximately equal if there is only
one attractor in the state-space, in the neighbourhood of the
desired state. However, it was found [4], [13], that their values
may differ by several orders of magnitude if disconnected
attractors coexist. Even in the latter case, the attractors can

be found in a f nite domain, in a so-called absorbing sphere.
To estimate the size of this sphere, we rewrite the map

yi+1 = Syi − ci as

yi+1 = Siy0 −

i−1
∑

j=0

Sjcj , (16)

The maximal possible norm |y∞| = limi→∞ max |yi| of the
vectors yi provides an estimation for the size of the attracting
domain at the origin.

Unfortunately, matrix S is not a so-called normal matrix,
i.e., its norm (the greatest singular value) can be larger than
1. Still – since S is chosen such that its eigenvalues are inside
the unit circle –,

lim
i→∞

||Si|| = 0 (17)

is fulf lled [4]. Thus,

|y∞| = max

∣

∣

∣

∣

∣

∣

∞
∑

j=0

Sjcj

∣

∣

∣

∣

∣

∣

. (18)

The details of the application of this formula depend on
the properties of matrix S and vector cj .

• In most of the cases, S is diagonalizable. In this case,
S can be expressed as a diagonal matrix Ŝ in the basis
of eigenvectors. Let T denote the (in general complex-
valued) matrix that is composed of the eigenvectors
of S. By multiplying both sides of (16) by T−1 and
formally taking the limit i → ∞, one obtains

T−1y∞ =

∞
∑

j=0

T−1SjT T−1cj . (19)

Consider the case when the output signal is rounded.
In this case, vectors cj can be expressed as cj = sOfj
(cf. (9)). In the basis of the eigenvectors of S,

T−1cj = [s̃O1 . . . s̃On]
T fj. (20)

Thus,

T−1y∞ =







∑

∞

j=0 λ
j
1s̃O1fj

...
∑

∞

j=0 λ
j
ns̃Onfj






. (21)

If the eigenvalues λk are complex or negative real
numbers, the choice fj = 1, ∀j does not lead to the
maximal norm of y∞. This problem can be overcome
if the absolute values of the eigenvalues and the
elements of sO and T are considered:

|y∞| <

n
∑

i=1

∣

∣

∣

∣

∣

∣

n
∑

j=1

|Tij |
|s̃Oj |

1− |λj |

∣

∣

∣

∣

∣

∣

. (22)

• In the rare case, when S is not diagonalizable, further
results can be used from the theory of non-normal
matrices [14]. Unfortunately the upper estimates that
are based on the general theory usually provide unre-
alistically large numbers. These large numbers cannot
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tbe used for the prediction of the behaviour of the real
control system.

|y∞| is necessarily f nite, since the eigenvalues of S are
inside the unit circle. The generalization of formula (22) is
straightforward. Thus, we can claim that there exists a f nite
attracting domain for each version of the micro-chaos map in
the neighbourhood of the origin. Note, that if the size of the
attracting domain is to be determined in a practical problem,
the state variables must be rescaled to dimensionless form.
If the variables are displacement, angle, speed and angular
velocity, this step can be done by rescaling the time and the
distance.

2) Example: To illustrate the result of this section via an
example, consider the problem of the inverted, PD-controlled
pendulum, without processing delay. In this case, the variation
of the angle ϕ and the angular velocity ω of the pendulum can
be given by the following equations between two successive
sampling instants t ∈ [iτ, (i+ 1)τ):

ϕ̇ = ω,

ω̇ = α2x− (Pϕi +Dωi). (23)

The corresponding linear two-dimensional map assumes the
form

[

ϕi+1

ωi+1

]

=

[

ch− P ch−1
α2

sh
α
−D ch−1

α2

α sh− P sh
α

ch−D sh
α

] [

ϕi

ωi

]

,

(24)
where ch ≡ cosh(ατ), and sh ≡ sinh(ατ). Thus, using the no-
tations, introduced in the previous sections, xi = col[ϕi ωi]
and

A =

[

ch sh
α

α sh ch

]

, B =

[

ch−1
α2

sh
α

]

, K =

[

−P
−D

]

.

The coeff cient matrix in (24) is S ≡ A+BK. It can be
checked by Jury’s criterions [6] that its eigenvalues are inside
the unit circle if

P > a2cond ≡ α2 (25)

D < a0cond ≡
α(1 + cosh(ατ))

sinh(ατ)
(26)

D > a1cond ≡
cosh(ατ) − 1

α sinh(ατ)
P. (27)

Thus, the domain of stability forms a triangle on the P -
D parameter plane. We restrict ourselves to this parameter
domain. Note that the corresponding stability domain of a
similar system with viscous damping and delay was derived
in [13].

Before applying formula (22), the state variables must be
rescaled. By introducing the dimensionless time T = t/τ ,
dimensionless variables ϕ̂ = ϕ/(τ2rO), ω̂ = ω/(τrO),
and parameters α̂ = ατ , P̂ = Pτ2, and D̂ = Dτ , the
equations become dimensionless. We used the parameters that
correspond to a real inverted pendulum [15]: α̂ = 6.8511·10−2,
P̂ = 5.4997·10−3 and D̂ = 2.5665·10−2. In the remaining part
of the paper, the hat symbols of dimensionless quantities will
be discarded. There are altogether 12 disconnected attractors
in the phase-space of the system. In Figs. 1 and 2 two
local attractors are shown. The size of the global attracting
domain was estimated by formula (22) and also by numerical

x10
4

φ

ω

5.455 5.4551 5.4552

-0.6

0

0.6

Fig. 1. An attractor of the system.

φ

ω

0.6

0

-0.6

1.09078 1.0908
x105

Fig. 2. The attractor farthest from the origin.

experiments. The results, together with the imaginary part of
one of the eigenvalues of S are depicted in a logarithmic
scale in Fig. 3 as function of parameter P . If parameter D
is increased, the eigenvalues of S become real. Consequently,
the estimate (22) becomes more accurate, see Fig. 4.

B. Sensitivity to initial conditions

It is quite trivial that the eigenvalues of matrix U are the
Lyapunov exponents of the system. In the considered example,
λ1,2 = exp(±α̂). Note that the Lyapunov exponents of the map
and the underlying f ow are related as λflow = λmap/τ . For
the dimensionless case, these exponents are equal. One of the
greatest diff culties during the numerical simulation of the map
is the estimation of the duration of transients. Because several
attractors coexist, the solution may spend quite a long time
in the neighbourhood of a chaotic attractor, before reaching
another attractor. The exact value of the largest Lyapunov
exponent is known: λmax = exp(α̂) ≈ 1.00687. Thus, the
rate of convergence and the error of a numerical Lyapunov
exponent estimation method can be determined and used for
the estimation of the properties of the transient behaviour of the
system. We determined the Lyapunov exponent by a method
described in [16]. The results are shown in Fig. 5. As it can be
seen, the error of the Lyapunov exponent calculation is indeed
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Fig. 5. The correct Lyapunov exponent and its estimated value.

larger if the size of the attracting domain is also large – cf.
Fig. 3.

C. Dimension of the attractor

The number of possible attractors within the global at-
tracting domain is hard to determine automatically. In order
to explore the structure of local attractors, we performed
several numerical simulations with varying initial conditions
and detected the positions of the middle points of the resulting
attractors. As Fig. 6 shows, these points take place according
to a certain pattern. The fractal dimension D0 of the attractors
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Fig. 6. The fractal dimension of the local attractors and their position.

was also calculated. The results are also depicted in the f gure.
Although we implemented only a rather simple automatic box-
counting algorithm, it is easy to see that the fractal dimension
changes in accordance with the appearance of new attractors.
We hope that by applying a ref ned calculation method, we will
be able to characterize the local attractors more accurately.

D. Periodic points

The periodic points of micro-chaos maps of the form
yi+1 = Uyi + bi can be found simply according to the
def nition of periodic points, i.e., that after p iteration steps,
the state vector becomes equal to the initial vector: yp = y0.
This form of the map can be rewritten similarly to (16). Thus,
using the notation bi = Gmi – where mi, i = 0 . . . p− 1 are
the integer parts of the output at the subsequent steps –, the
initial state of a possible p-periodic solution can be expressed
as

y0 = (I−Up)−1
(

Up−1Gm0 + . . .U0Gmp−1

)

. (28)

Unfortunately, the results must be checked for the possible
combinations of the integer numbers mi, which is very time
consuming. We performed this task in the case of the con-
sidered example for periods 1-6. The results are presented
in Fig. 7. At the parameters of the example, the farthest 6
periodic point is at ϕ ≈ 106500, while the farthest attractor
is at ϕ ≈ 109080. In general, the 6 periodic points are not in
the closures of the local attractors, but they are in the global
attracting domain. Thus, a lower estimate of the size of the
attracting domain can be obtained, based on this calculation.
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V. SUMMARY

We generalized the so-called micro-chaos maps for full-
state feedback systems of arbitrary dimension. Two types of
round-off were taken into account; the resulting maps have
similar structure. A formula was derived for the estimation of
the largest possible round-off-induced control error and three
different possibilities were highlighted for the characterization
of micro-chaotic behaviour: 1) since the Lyapunov exponent is
known, the transients of the chaotic motion can be f ltered out
by checking the convergence properties of Lyapunov exponent
calculation algorithms. 2) Because several local attractors may
co-exist, the exploration of all of these attractors is rather
diff cult numerically. Our latest results indicate that the fractal
dimension of a numerically obtained attractor may be used as
an indicator of bifurcations that give rise to new attractors. 3)
The positions of periodic points can be used for giving a lower
estimate of the size of the global attractor.
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